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Abstract. In this paper, the application of steady state models of electric
machines for detecting and tracking incipient faults is reported. After
highlighting the simplicity and feasibility of these methods, two examples
are explained: detecting inter-turn stator windings short circuits in induction
motors and detecting this kind of fault, but at synchronous generators
excitation windings. In the last case, the practical difficulties for fulfilling
the necessary tests, advise to employ Artificial Neural Networks. The

successful application of this emergent technology is demonstrated by
means of a case study.

1 Introduction

Electric machines are one of the most important components of all kinds of industrial
plants. Currently, all the electricity that feeds these plants is produced in electric
generators and more than 60% of the electric power consumed by them is by means of
electric motors. :

It is evident then, the importance of keeping these machines operating in a reliable and

efficient way and the necessity of reducing to a minimum its outages that are very harmful
from the economical point of view.
In order to achieve these goals, it is essential to count on a predictive maintenance system
based upon a continuous tracking of any incipient fault. This system makes it possible to
take out the machine when a maintenance period is scheduled or, in the worse case,
without any surprise [1].

The main faults that occur in an electric machines are, firstly, the mechanical ones sgch
that rotor eccentricities or misalignment and bearings problems, as follows, the insulation
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failures that causes inter-turn short-circuits and finally the presence of broken rotor bars in
squirrel cage induction motors or in synchronous generators damper winding [2] [3].

One of the most important types of method for detecting motor faults is the Frequency
Domain that relies on a spectral frequency analysis of the stator current, the rotor
vibration amplitudes, the axial flux or the machine electromagnetic torque [1-5]. Another
type of method is the Model Based, which compares the actual behaviour of the machine
with its healthy performance based on its models [1] [2] [6-14].

This paper addresses the principal aspects of this kind of method applied to electrical
machines, and explains some author’s experiences on its applications.

2 Electric machines models for diagnostic

The rotating electrical machines are electromechanical energy conversion devices that
convert electric energy to mechanical energy or vice versa. This process is characterized
for the existence of two well defined and different states or modes of operation: the Steady
State and the Dynamic or Transient State [15] [16] [17].

At the steady state, the principal variables of the machine remain constant. The most
important performance variables of the machine in this state are the current (rotor, stator
or both), the speed, the active and reactive power consumption and the power factor.
These variables are greatly influenced by the existence of any fault at the mechanical or at
the electric system. For example, a damage bearing increases the current and the active
power consumption, the presence of inter-turn short circuit in the rotor of a synchronous
generator increases its excitation current for delivering the same active and reactive power
to the mains and so on.

On the other hand, the transient or dynamic state occurs when the machine is
transitioning between two steady states or is submitted to a mechanical or electric
disturbance. The more important variables to be analyzed in this case are the currents, the
speed and the electromagnetic torque as a function of time. The dynamic performance is
also affected by a fault, generally, the transient phenomena are delayed and the oscillatory
behaviour is different.

This permit to state a Normal Operation Model, this is the model of a “healthy
machine”, and comparing it with the actual machine performance (steady or transient) is
possible to detect the presence of a failure and its level or depth.

As it is well known, the first stage in establishing a model is to identify adequately its
parameters. Because of that, another kind of motor method for diagnostic purposes is the
so called Parameters Detection Method since a failure situation always changes some
machine parameter [2] [18-21].

Generally, it is more difficult to identify and obtain a dynamic model than a steady state
model, because of that, this paper concentrates in this kind of models reporting some
author’s experiences. First, a method to detect incipient faults at stator winding induction
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motor is treated and finally a method to detect excitation winding failures in a
synchronous generator applying Artificial Neural Networks (ANN) is reported.

3 Steady state models for failure diagnostic in induction motor stator

This method is based upon the well known induction motor equivalent circuit shown in
Fig. 1. With this model, after the parameter identification, it is possible to carry out the
characteristics of the motor. This characteristic expresses that, in a healthy motor, for any
load torque, there will be a specific speed of rotation, current and power factor.
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Fig 1. Induction motor equivalent circuit for a healthy motor

The parameters of this model are:
e R, the stator winding resistance per phase
e Xsrand Xgys, the leakage reactance of stator winding and rotor winding per phase.
e RR, the rotor winding resistance per phase and
e Xy, the magnetizing reactance
These parameters are identified with the no load test, the blocking rotor test at variable
frequency and the measurement of the stator resistance and its temperature correction

[22]. Due to the skin effect, the rotor resistance and leakage reactance are function of the
slip, the corresponding equations are:

RR=K,+K,~[s
K (1)

T

The parameters of these equations are identified utilizing the blocking rotor test at
variable frequency. On the other hand, if inter-turn short-circuits are present, these short
circuited turns can be considered as a new closed winding similar to the single phase
induction motor. The current that circulates through this winding creates a pulsating flux

XRf=K3+
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that can be decomposed into two components: a positive sequence and a negative
sequence, that are equal in value and speed of rotation but one rotates in same direction of
motor rotation and another in opposite direction
This situation translated to the equivalent circuit model looks as depicted in Fig. 2.
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Fig 2. Induction motor equivalent circuit for a motor with short circuited turns. a) Positive sequence
b) Negative sequence.

I¢) and I, are the positive and negative current components, and the parameters of the
new branch in parallel with the magnetizing reactance are:

.
a )
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In this equation, o is the percent of turns in short circuit. A MATLAB program was
elaborated, such that, varying the slip from 1 to 0, calculates the current, the speed, the
power factor and the torque with and without short circuited turns and finally, plots the
characteristics for both cases. The results of current and power factor, applied to a 6 kV, 1
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MW, 8 poles, 60 Hz motor (belonging to a feed water pump of a thermal power plant), are
shown in Fig. 3 and Fig. 4.
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Since is easy to realize analyzing the figures, by measuring the differences between the
motor and the model current and power factor, it is possible to detect and incipient fault
and track its development because these differences increases with the depth of the
failure.

4 Steady state models for failure diagnostic in synchronous generators excitation
winding

One of the most frequent synchronous generator failures is the presence of short circuit
turns in the generator excitation winding. For detecting it, a steady state model that relates
the active and reactive power with the excitation current is proposed. With a faulted rotor
winding, the excitation current to deliver the same reactive power for a constant active
power increases [23].

In order to apply the above mentioned method it is necessary to carry out the open
circuit, short circuit and zero power factor tests [17], each time the generator is
maintained because its parameters varies with time due to materials ageing. The zero
power factor tests are difficult to fulfil in the conditions of a power plant so it is advisable
to devise a more simple method to obtain the model.

The solution of this problem could be carried out employing a Function Approximation.
As it is well known, the best choice is an Artificial Neural Network (ANN) profiting by its
learning capacity and robustness [24]. The training patterns chosen are the values of
active power P and reactive power Q corresponding to a specific excitation current I.
This method was applied to a 13, 2 kV, 60 MW, turbo generator using the information
collected during two years in Antonio Maceo Power Plant located at Havana, Cuba [25]

[26).

' exc

Fig. 5. Artificial neural network topology
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The Levenberg Marquadt backpropagation algorithm was utilized. By means of the
trail and error method the network topology and the values of the training coefficient 1)
and momentum M were determined. In this case, a network with two hidden layers of five
neuron (see Fig 5) and a value of 1 = 0.2 and M = 0.9 was the best choice. The maximum
permissible error during the training was € = 0.01.

The turbo generator utilized was submitted to a maintenance outage at the middle of
1996 and a shutdown due to inter-turn short circuit occurred during 1998 summer. A
report with the active and reactive power, the excitation current, the stator current and
excitation voltage hour by hour was available. With this report, a Data Base at Microsoft
Access was prepared.
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Fig. 6. Generator Identification Scheme

Due to the instruments errors and the perturbation caused by the variation of voltage
and frequency, not all the same values of active and reactive power correspond to the
same value of excitation current. A statistical and probabilistic analysis demonstrated that
the values followed the Normal Probabilistic Law was carried out in order to justify the
utilization of an average excitation current. The data appertaining to the first months after
the outage were selected for training the ANN.

At the following months, the trained ANN was compared with the data taken each hour
and the errors were averaged for each month. This value was called Monthly Average
Error and was utilized as a diagnosis parameter. In figure 7 the values of this parameter
for the 14 months following the selected for the ANN training, are shown.



220 A. Costa, M. Vilaragut and R. Lopez

Monthly Average Erxox

Eavg

00 00 D O
N e
Nl

¥
nO —.—lulnlu|—| T | .l- LI 13 L l
X 424 4

Months

Fig. 7. Monthly average error.

Since is easy to see, before the 9" month, the errors were very small and oscillating
around zero. This means that there was no appreciable inter-turn short-circuits. At the
following four months, the errors are positive, their values greater than 0.1 and almost
constant. At the 13" month, the error is more than doubled and at the 14™ month reached a
value equals to 0.45. At this time, the generator was stopped, the rotor was extracted and a
great deal of the excitation winding was with inter-turn short circuit.

6 Conclusions

By means of these two examples, it is easy to realize the advantages of applying steady
state models of electric machines to the diagnostic of incipient faults in order to adopt a
predictive maintenance policy.

In both cases, well-known machines characteristics were utilized and, to determine
them, only are necessary to fulfil conventional tests and when it is difficult or impossible
to identify the needed parameters, some Artificial Intelligence (Al) Technique could be
applied successfully.

These methods could be applied to the detection of another electric machine failure
situation such as induction motor broken rotor bars, machine mechanical damage and
other related faults.
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